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Abstract

We present the analysis and numerical simula-
tions of the perfectly matched layer (PML) in a
discontinuous elastic medium. We prove that all
interface wave modes in piecewise constant elas-
tic media, separated by a planar interface, are
dissipated by the PML. In addition, we present
numerical simulations to verify the analysis and
generalise the results to complex elastic media.
Numerical examples using the Marmousi model
demonstrates the utility of the PML and our nu-
merical method for seismological applications.
Keywords: Elastic Waves, Perfectly Matched
Layers, Stability Analysis, Finite Difference Meth-
ods, Summation by Parts

1 Summary

Consider the PML [3], in Cartesian coordinates
(x, y) ∈ Ω ⊂ R2,

ρ

(
∂2u⃗

∂t2
+ σ

∂u⃗

∂t
− σα(u⃗− q⃗)

)
=

∂

∂x
T⃗x +

∂

∂y
T⃗y,

∂v⃗

∂t
= −(σ + α)v⃗ +

∂u⃗

∂x
,

∂w⃗

∂t
= −(σ + α)w⃗ +

∂u⃗

∂y
,

∂q⃗

∂t
= −α(u⃗− q⃗), (1)

with the PML stress vectors

T⃗x = A
∂u⃗

∂x
+ C

∂u⃗

∂y
− σAv⃗, (2)

T⃗y = CT ∂u⃗

∂x
+B

∂u⃗

∂y
+ σBw⃗. (3)

The PML (1)–(3) absorbs outgoing waves in the
x-direction in an elastic medium. The unknowns
are the displacement vector u⃗ ∈ R2 and the
PML auxiliary variable v⃗, w⃗, q⃗ ∈ R2. Here σ(x) ≥
0 is the PML damping function and α > 0
is the complex frequency shift (CFS). To sim-
plify the presentation we consider isotropic elas-
tic medium defined by the density ρ > 0 and the
coefficient matrices

A =

[
2µ+ λ 0

0 µ

]
, B =

[
µ 0
0 2µ+ λ

]
, C =

[
0 λ
µ 0

]

with λ, µ denoting the Lamé parameters. The
density of the material is denoted by ρ > 0.
The p and s wave speeds are given by cp =√
2µ+ λ/ρ, cs =

√
µ/ρ. In general the elastic

media is heterogeneous and discontinuous. At
discontinuities we define the outward unit nor-
mal vector (nx, ny)

T ∈ R2 on the interface and
the PML traction vector T⃗ = nxT⃗x+nyT⃗y and
we enforce the jump conditions,

[[T⃗]] = 0, [[u⃗]] = 0. (4)

Note that the if the discontinuity lies on the y-
axis (x-axis) we have (nx, ny) = (0, 1) ((nx, ny) =
(1, 0)). The problem is specified along with the
initial conditions

u⃗(0) = u0(x, y),
∂u⃗

∂t
(0) = u1(x, y). (5)

Theorem 1 Consider the PML model (1)–(3)
in two half-plane elastic media with piecewise
constant material parameters and the interface
condition (4) at the planar interface, y = 0. If
σ > 0 and α > 0 are constants, then all inter-
face wave modes are dissipated by the PML.

The proof can be found in [4], and the result can
be extended to anisotropic elastic medium as
long as the corresponding whole plane constant
coefficient PML is stable.

2 Results

2.1 Example 1

The first example considers a two-layer isotropic
media on a Cartesian grid separated by a flat
interface. The material constants were com-
puted using the wave speeds cs1 = 1.8, cp1 =
3.118 on Layer 1 and cs2 = 3, cp2 = 5.196
on Layer 2. The densities were assumed to be
ρ1 = 1.5 and ρ2 = 3 on Layer 1 and 2, respec-
tively. We use a smooth Gaussian initial pulse
for the displacement and a zero initial condition
for the velocity. We compare the PML solu-
tion with the elastic-wave solution using only
the ABC without the PML. We use the 4th-
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Figure 1: (Left) An example of a layered me-
dia along with the truncated region and the PML
computational domain. Our goal is to restrict the
computational domain using the PML (denoted by
black, dashed line). The region to the left of the
green line denotes the truncated domain, and the
red dot inside the truncated domain is the smooth
Gaussian initial pulse for the displacement. The ref-
erence solution is computed on the full domain (yel-
low region) using ABC. (Right) The maximum-norm
error between the reference and PML solutions (red,
solid) and the ABC solution (blue, dashed) inside
the truncated region. The error is lower when PML
is used, indicating that it is more effective than the
absorbing boundary conditions.

order summation-by-parts technique on a 481×
161 grid to compute the reference solution on a
larger domain. To discretise the temporal axis,
we use the 4th-order Runge-Kutta scheme with
∆t = 0.2h/

√
maxi

(
c2pi + c2si

)
and solve till final

time T = 10. The extended domain is obtained
by extending the PML domain three times along
the +x direction. We then compute the PML &
ABC solution error inside the truncated region.
The results are summarised in Figure 1.

2.2 Example 2
We solve the governing equations with the ma-
terial properties obtained from the Marmousi2
dataset [1], which contains the material density
and the wave speeds. Let L be the length of the
domain. We define

σ(x) =


σv
0

(
Lσ,1−x

δ

)3

, x < Lσ,1

σv
0

(
x−Lσ,2

δ

)3

, x > Lσ,2

0, o.w

(6)

where 0 < Lσ,1 < Lσ,2 < L. We compute
the solution (shown in Figure 2) to (1)–(5) us-
ing the 4th-order summation-by-parts method
in space on a 301 × 41 grid on Layers 1 and 3
and a 601 × 51 grid on Layer 2. We employ
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Figure 2: (Top) The shear wave speed cs of the ma-
terial obtained from the Marmousi2 dataset. (Mid-
dle) The solution at T = 0.5 to the PML model
considered in Example 2 and (Bottom) The solution
at T = 10. We observe that the wave speeds across
the interfaces are different and the incoming waves
are absorbed by the PML.

the 4th-order Runge-Kutta scheme in the tem-
poral direction and solve till final time T = 10 s.
We consider a smooth Gaussian initial pulse for
the displacement at three different locations in
Layer 2, and a zero initial condition for the ve-
locity and the auxiliary variables.
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