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Vibrations of Ice Shelves



History

▶ First proposed by Holdsworth and Glynn (1978) in Nature.
▶ Holdsworth and Glynn (1981) studied the mechanism with data from the Erebus

Glacier Tongue.
▶ Experimental measurements using seismometers were performed by MacAyeal

et al. (2006); Cathles et al. (2009); Bromirski et al. (2010); Massom et al. (2018)
which confirmed the presence of these vibrations.

▶ Mathematical models have been proposed to study the vibrations of ice–shelves,
predominantly the thin–plate/shallow water models (Sergienko, 2013; Meylan
et al., 2017) and more recently, numerical methods based on finite element
methods have also been used (Papathanasiou et al., 2015a,b; Ilyas et al., 2018).
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Governing Equations
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Figure: Governing equations as discussed by Kalyanaraman et al. (2020)
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Finite element discretization
Define the following spaces

V = H1(Ωf ),

W =
{
w : w ∈

[
H1(Ωs)

]2
,w = 0 on Γ(2)

s

}
,

Vh = {ϕh ∈ V : ϕh|T ∈ Pk(T ) for all T ∈ Tf} ,
Wh =

{
wh ∈W : wh|T ∈ [Pk(T )]

2 for all T ∈ Ts
}

The finite dimensional weak formulation of the coupled problem is to find
(ϕh,wh) ∈ Vh ×Wh such that

(∇ϕh,∇ψ)Ωf
= −iω ⟨wh, ψ⟩Γ(3)

f

+ ⟨Qϕh, ψ⟩Γ(4)
f

+ ⟨χ, ψ⟩
Γ
(4)
f

(σ(wh) : ϵ(v))Ωs = ρsω
2 (wh,v)Ωs

+ ⟨wh,v · n⟩
Γ
(1)
s

−iω ⟨ϕh,v⟩Γ(3)
f
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Modal expansion methods
To de–couple the ϕh and wh in the problem, we assume the following ansatz for the
final solution

ϕh(x, z) = ϕ0(x, z) +

M∑
j=1

λjϕj(x, z), wh(x, z) =

M∑
j=1

λjηj(x, z)

with λj ’s being the unknown “dofs”. Substituting this into the weak formulation of
the linear elasticity equations, we obtain

M∑
j=1

λj

[
(σ(ηj) : ϵ(wh))Ωs − ρsω

2(ηj ,wh)Ωs

−⟨ηj ,wh · n⟩Γ(1)
s

+ iω ⟨ϕj ,wh⟩Γ(3)
f

]
= −iω ⟨ϕ0,wh⟩Γ(3)

f
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Reduced System

This corresponds to the (reduced) linear system

[
K− ω2M+C+ iωB

]
λ = f

Properties
▶ Entries are analytic functions of ω.
▶ Can be interpolated as a function of ω

once the finite element solutions are
obtained on a coarse ω grid.

▶ Useful to construct time–domain solutions
and complex resonances.
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Diffraction and Radiation Potentials

The functions ηj ∈Wh are the in–vacuo vibration modes of the ice–shelf which
corresponds to solving the eigenvalue problem

(σ(η) : ϵ(v))Ωs
= ρs β

2 (η,v)Ωs

for all v ∈Wh. The diffraction potential ϕ0 ∈ Vh and the radiation potential ϕj ∈ Vh
corresponding to the vibration mode ηj can be obtained by solving:

(∇ϕ0,∇ψ)Ωf
= ⟨Qϕ0, ψ⟩Γ(4)

f

+ ⟨χ, ψ⟩
Γ
(4)
f

(∇ϕj ,∇ψ)Ωf
= ⟨Qϕj , ψ⟩Γ(4)

f

− iω ⟨ηj , ψ⟩Γ(3)
f

Properties
▶ Parallelizable.
▶ Useful to solve large problems

involving multiple in–vacuo modes.
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The Sulzberger Ice Shelf

The profiles were extracted from the bedmap2 dataset (Fretwell et al., 2013).



Sea Elevation Data
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Figure: Tide gauge data from March 10 to March 20, 2009. Courtesy: Land Information New
Zealand (LINZ)



Wave spectrum
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Spectral analysis of the Tsunami wave indicates that the amplitude of the wave follows
a power law (Rabinovich, 1997). The time–domain solution is obtained by the inverse
Fourier transform,

u(x, z, t) =

∫ ∞

−∞
f̂(x, ω) e−i(ωt+Φω)η(x, z, ω) dω,

for a random phase Φω = Φω(ω) and f̂(x, ω) is the power law spectrum shown in red.
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Frequency–domain solutions

Figure: Frequency domain solution for T = 50 s. Value of reflection coefficient
R = −0.61272− 0.79030i and |R| = 1.



Figure: Frequency domain solution for T = 5000 s. Value of reflection coefficient
R = −0.85007− 0.52666i and |R| = 1.



Time–domain simulation



Conclusions

▶ A mathematical model based on linear elasticity and potential flow.
▶ Modal expansion methods to solve the resulting equations.
▶ Extension of these methods to solve real–life problems using bedmap2. All

numerical experiments were performed using FreeFem (Hecht, 2012).

A code repository written based on FreeFem is available on GitHub at
https://github.com/Balaje/iceFem

https://github.com/Balaje/iceFem
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